
The Journal of Systems and Software 139 (2018) 107–123

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Localizing multiple software faults based on evolution algorithm

Yan Zheng

a , Zan Wang

a , ∗, Xiangyu Fan

a , Xiang Chen

b , Zijiang Yang

c

a School of Computer Software, Tianjin University, China
b School of Computer Science and Technology, Nantong University, China
c Department of Computer Science, Western Michigan University, USA

a r t i c l e i n f o

Article history:

Received 7 March 2017

Revised 18 January 2018

Accepted 5 February 2018

Available online 6 February 2018

Keywords:

Multi-fault localization

Program spectrum

Genetic algorithm

Search based software engineering

a b s t r a c t

During software debugging, a significant amount of effort is required for programmers to identify the

root cause of manifested failures. Various spectrum-based fault localization techniques have been pro-

posed to automate the procedure. However, most of the existing fault localization approaches do not

consider the fact that programs tend to have multiple faults. Considering faults in isolation results in

less accurate analysis. In this paper, we propose a flexible framework called FSMFL for localizing mul-

tiple faults simultaneously based on genetic algorithms with simulated annealing. FSMFL can be easily

extended by different fitness functions for the purpose of localizing multiple faults simultaneously. We

have implemented a prototype and conducted extensive experiments to compare FSMFL against existing

spectrum based fault localization approaches. The experimental results show that FSMFL is competitive

in single-fault localization and superior in multi-fault localization.

© 2018 Elsevier Inc. All rights reserved.

1

p

r

o

m

m

t

p

m

Y

2

s

f

a

c

a

c

c

a

c

n

s

e

T

g

a

X

f

b

t

a

U

t

t

b

a

m

a

r

t

e

X

m

i

h

0

. Introduction

Testing and debugging are considered as the most expensive

hase of the entire software development cycle (Beizer, 1990). One

eason for such high cost is that the process of tracing propagation

f faults and identifying the location of erroneous program state-

ents is labor-intensive and time consuming. To reduce the cost,

any fault localization techniques that automate, or partially au-

omate, the locating faults procedure have been proposed in the

ast decade. Among them, Spectrum-based Fault Localization (SFL)

ethods (Wong et al., 2016; Jones et al., 2002; Abreu et al., 2006;

oo, 2012; Dallmeier et al., 2005; Chen et al., 2002; Naish et al.,

011) have been shown effective and efficient. These methods as-

ume that a test suite includes a sufficient number of passing and

ailing test cases. After comparing and contrasting these passing

nd failing executions, SFL then assign suspicious scores to all exe-

uted statements and output a descending list of these statements

ccording to their suspicious value.

Numerous SFL techniques with a variety of suspicious score

omputation functions have been proposed. All of them have a

ommon goal to assign a suspicious score as high as possible to

 buggy statement, and as low as possible to a correct one. Ac-

ording to the study by Xie et al. (2016) , fault localization tech-

iques offer little help to debug small programs. This is under-
∗ Corresponding author.

E-mail address: wangzan@tju.edu.cn (Z. Wang).

l

t

e

ttps://doi.org/10.1016/j.jss.2018.02.001

164-1212/© 2018 Elsevier Inc. All rights reserved.
tandable as examining the ranked statements may take as much

ffort as examining the whole source code in a small program.

herefore, fault localization techniques are likely used for debug-

ing large programs, where multiple errors typically exist. From

nother perspective, according to the investigation performed by

ia et al. (2016) , developers use and benefit from spectra-based

ault localization techniques. Their experimental result reveals that

oth the accurate and mediocre spectra-based fault localization

ools can help professional developers save their debugging time,

nd the improvements are statistically significant and substantial.

nfortunately, most SFL methods are optimized for single fault and

hus the ranked statements are less accurate when there exist mul-

iple faults. These methods assign the statements that are executed

y more failed test cases with higher suspicious scores, even they

re actually correct. For some faulty statements, the SFL methods

ay assign them low suspicious scores because executing them

lone may not lead to failure. Consequently, some statements are

anked incorrectly when there are multiple faults.

To investigate this issue, the relationship between faults and

he influence of multiple faults on fault localization have been

xamined (Debroy and Wong, 2009; DiGiuseppe and Jones, 2011;

ue and Namin, 2013). The studies imply that different faults

ay interfere with each other and significantly decrease local-

zation accuracy. Based on the findings, several approaches for

ocalizing multiple faults, or multi-fault localization (in contrast

o traditional single-fault localization), have been proposed (Dean

t al., 2009; Abreu et al., 2009; Steimann and Bertschler, 2009a;

https://doi.org/10.1016/j.jss.2018.02.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.02.001&domain=pdf
mailto:wangzan@tju.edu.cn
https://doi.org/10.1016/j.jss.2018.02.001

108 Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123

S

w

i

t

2

B

b

2

a

t

b

c

b

S

n

p

o

f

g

a

h

c

p

f

u

t

(

2

s

c

(

2

o

s

t

m

t

n

s

r

t

F
Steimann and Frenkel, 2012a; Gong et al., 2012). However, these

multi-fault localization approaches have several limitations that

prevent their adoption in real applications. Specifically, linear-

based approach (Dean et al., 2009) adopts a linear programming

model to solve multi-fault localization. Such approach requires

that a suspicious function can be converted to a linear model.

Thus, it is not general as not all suspicious functions can be

converted to linear models. Instead of calculating the probabil-

ity of each statement being the faulty one, the coverage-based

approaches produce a set that consists of as many faulty state-

ments as possible (Steimann and Bertschler, 2009a; Steimann and

Frenkel, 2012a). However, the approaches do not attempt to lo-

cate all the faulty statements. That is, the last faulty statement can

be ranked very low. In order to reduce the computational cost of

the algorithm proposed in Steimann and Bertschler (2009a) , inte-

ger linear programming is adopted to divide the coverage matrix

(Steimann and Frenkel, 2012a). Nevertheless, these coverage-based

approaches are not scalable due to relatively complex algorithms.

Moreover, in Steimann and Bertschler (2009a) and Steimann and

Frenkel (2012a) , comparison experiments against other multi-fault

localization approaches were not conducted.

In this paper, we propose FSMFL, a Fast Software Multi-Fault

Localization Framework based on Genetic Algorithms. The innova-

tion of this approach is that we transform the multi-fault local-

ization problem to a search problem where program statements

are encoded as a chromosome to indicate whether a statement

is faulty. For example, “010010 0 0 0 0” represents ten lines of code

where the second and fifth statements are faulty. Each chromo-

some is a candidate solution that is evaluated by a fitness func-

tion. A fitness function determines how good a candidate solution

explains the failed and passed test cases that cover its statements.

Then, a genetic algorithm generates a population that consists of

a set of binary chromosomes. The genetic operators, such as selec-

tion, crossover, mutation, accepting and replacement, are employed

to evolve the population until the algorithm reaches a predefined

threshold. Finally, statements are ranked according to the last can-

didate population.

We have implemented a prototype of FSMFL and evaluated it

on a large number of faulty programs. Our goal is to locate all

the faulty statements, thus the ranking of the last faulty statement

is important to us. Among the multi-fault localization approaches,

converge-based approach and its variants (Steimann and Bertschler,

2009a; Steimann and Frenkel, 2012a) do not attempt to locate all

the faulty statements and thus not in line with our purpose. Be-

sides, the algorithm may not be scalable as no large empirical

studies were conducted (Steimann and Bertschler, 2009a). Hence,

besides comparing against single-fault localization approaches, we

compare our approach against linear-based multi-fault localization

approaches only. Our benchmark consists of Siemens programs,

three Linux programs, space program and five Defects4j programs

(Just et al., 2014; Andrews et al., 2005). Our experiments indicate

that FSMFL outperforms the state-of-the-art single- and multi-fault

localization approaches.

In summary, this paper makes the following contributions.

1. To the best of our knowledge, we are the first to propose a

method that transforms multi-fault localization problem to a

search problem so the genetic algorithm with simulated an-

nealing can be exploited. A framework called FSMFL has been

implemented. FSMFL is a flexible framework that accepts dif-

ferent population initialization strategies, fitness functions, and

termination criteria.

2. We design a new fitness function for the purpose of multi-fault

localization. The fitness function gives a candidate a higher fit-

ness value if it covers more failed test cases and less passed
test cases. Our experiments confirm that the fitness function is

effective when handling both single and multi-fault programs.

3. We perform various optimizations to improve the performance

of FSMFL. Meanwhile, we have built a benchmark that has

both single-fault and multi-fault programs. FSMFL is evaluated

against 8 other approaches on this benchmark. The evaluation

shows that execution time of FSMFL is less than 23 s for large-

scale programs (over 30,0 0 0 lines of code on average). Fur-

thermore, statistical hypothesis tests (ANOVA, LSD, Benferrion,

Wilcoxon Signed Rank and Cohen’s d) are also conducted to

verify the competitiveness of FSMFL.

The remainder of the paper is organized as follows.

ection 2 describes the background and the motivation of our

ork. The detailed multi-fault localization approach is presented

n Section 3 , followed by empirical study in Section 4 . After giving

he related work in Section 5, Section 6 concludes the paper.

. Motivation

In this section, we introduce the motivation with an example.

efore that, we present the preliminary background for spectrum-

ased fault localization.

.1. Preliminaries

Program spectrum is defined as the execution information of

 program during the testing process, including coverage informa-

ion, test results, and executable conditional branches. Spectrum-

ased fault localization requires a set of passed and failed test

ases. The statistical information used in the traditional spectrum-

ased fault localization approaches are summarized in Table 1 .

uch approach requires The terms n np (s) and n nf (s) denote the

umber of passed and failed test cases that do not execute the

rogram entity s . The terms n, n p , and n f represent the number

f test cases, the number of passed test cases and the number of

ailed test cases, respectively. Typically a program entity is a pro-

ram statement.

Spectrum-based fault localization ranks the program statements

ccording to their suspicious scores. Intuitively, a statement has a

igher suspicious score if it is frequently executed by failed test

ases and seldom executed by passed ones. Note that, the sus-

icious score can be computed by different strategy which is re-

erred to as the suspicious function. Table 2 gives the formula

sed by suspicious functions in six spectrum-based fault localiza-

ion approaches that include Tarantula (Jones et al., 2002), Ochiai

 Abreu et al., 2006), GP13(Yoo, 2012), Ample (Dallmeier et al.,

005), Jaccard (Chen et al., 2002), OP2 (Naish et al., 2011). A

ystematic comparison on the effectiveness of different suspi-

ious functions has been conducted in a previous empirical study

 Naish et al., 2011).

.2. Motivating example

The first column in Fig. 1 gives a C program that finds the sec-

nd largest variable among the four inputs. There are two faulty

tatements at Lines 14 and 17. In the next ten columns, we list ten

est cases T 1 to T 10. We use 1 and 0 to denote whether a state-

ent is covered by a test case. In the last row, we indicate whether

he test case above is a passing(P) or failing(F) test case.

With the information we can easily obtain the values of n ep (s),

 np (s), n ef (s), n nf (s), n p and n f , and then compute the suspicious

cores using existing approaches. The last four columns give the

anking according to the results computed by the suspicious func-

ions of Tarantula, Ochiai, OP2 and FSMFL (The suspicious value in

SMFL is measured by the newly proposed formula to be explained

Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123 109

Table 1

Statistical information in spectrum-based fault localization.

Program entity s covered Program entity s not covered Program entity summary

Passed test cases n ep (s) n np (s) n p
Failed test cases n ef (s) n nf (s) n f
Test cases summary n ep (s) + n e f (s) n np (s) + n n f (s) n

Fig. 1. A program with two faults and its suspicious scores.

Table 2

Formulas used in spectrum-based fault localization.

Name Formula Name Formula

Tarantula
n e f (s) / n f

n e f (s) / n f + n ep (s) / n p
Ample

∣∣∣ n e f (s)

n f
+

n e f (s)

n p

∣∣∣
Ochiai

n e f (s) √

n f ×(n e f (s)+ n ep (s))
Jaccard

n e f (s)

n f + n ep (s)

GP13 n e f ×
(

1 +

1
2 n ep (s)+ n e f (s)

)
OP2 n e f (s) − n ep (s) / (n p + 1)

i

t

a

4

b

f

r

t

s

l

o

f

a

f

s

s

t

t

a

e

a

1

3

t

D

w

n

D

s

o

t

D

c

c

p

f

3

p
n Section 3.4). It can be observed that Line 14 is ranked 10 th by

he three existing approaches, a very poor result considering there

re only 17 statements in the program. As for Line 17, it is ranked

 th by Tarantula and 9 th by Ochiai and OP2. The example may not

e very representative, but it indeed shows that under multiple

aults the existing approaches may give poor results. One of the

easons is that these approaches consider each statement in isola-

ion and do not consider the effect of the combination of multiple

tatements. When there is only one faulty statement, it is more

ikely to be covered by more failing executions and less passing

nes. The passing and failing executions are diluted by multiple

aults so less accurate results are obtained. For example, Lines 14

nd 17 are each covered once by either, but not both, of the two

ailing test cases T 3 and T 4. On the other hand, there are many

tatements are covered by both failing test cases.

In this paper, we propose an approach that does not consider

tatements in isolation. For example, if we consider Lines 14 and 17

ogether, as a group they are covered by both failing test cases and
hus receives higher suspicious value. In our approach, we design

 fitness function to evaluate the combinations of program entities

ffectively through a genetic algorithm integrated with a simulated

nnealing algorithm. As for this example, our approach ranks Lines

4 and 17 at 5 th and 4 th position, respectively.

. Our approach

In this section, we present our approach on multi-fault localiza-

ion after necessary definitions.

efinition 1 (Test Suite) . T = { t 1 , t 2 , . . . , t n } represents a t est suit e

ith t i being the i th test case. Moreover, We use T F and T P to de-

ote the sets of failing and passing test cases, respectively.

efinition 2 (Program Entities) . E = { e 1 , e 2 , . . . , e m

} r epr esents a

et of program entities. Each entity can be a statement, a function

r a class. For test case t i , t ij gives whether the i th test case covers

he j th entity.

efinition 3 (Candidate Solutions) . C = { c 1 , c 2 , . . . , c m

} represents a

andidate solution that is a set of entities. The value of c j indi-

ates whether the j th entity should be assumed faulty. For exam-

le, {0,1,0,1,0} indicate the second and fourth entities are assumed

aulty while others are assumed correct.

.1. Coverage information preprocessing

Before adopting the genetic algorithm, our approach has a pre-

rocessing step to reduce the complexity of the coverage data

110 Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123

Fig. 2. Structure of FSMFL.

Algorithm 1 Fast Software Multi-fault Localization Framework.

Input: population size α, crossover rate γ , mutation rate q , itera-

tion count δ
Output: optimal population consists of best candidates

1: // generate feasible solutions randomly and save them into

population Pop

2: population ← Initial izeRandoml y () � Initialize feasible

candidate

3: Sort ByEv aluat ing(population) � Evaluate and sort for selecting

4: // initial annealing probability and decrease 0.05 after every

generation

5: ε ← 0 . 9 � Initial simulated annealing probability to 0.9

6: for i = 1 to δ do � Loop after iterating δ times

7: new ← next Generat ion (population, γ , q, ε) � update

population

8: if terminable(population, new) then � check if terminal

9: return population

10: end if

11: population ← new

12: if ε > 0 . 1 then � decrease if larger than 0.1

13: ε = ε − 0 . 05 � decrease ε every iteration

14: end if

15: end for

16: return population � returning the best candidate set after

evolution

a

s

t

m

d

t

p

p

as large-scale programs may have a very large coverage matrix.

Spectrum-based fault localization approaches depend on the ex-

ecution coverage information, therefore two statements with the

same coverage and two test cases with the same execution cov-

erage paths are indistinguishable during ranking. In this case, we

merge adjacent entities with the same coverage to form a single

program entity.

An entity that is never covered by any failed test case has little

chance to be identified faulty by a spectrum-based fault localiza-

tion approach. Since these entities can increase the search space,

we exclude these entities before executing our genetic algorithm.

After executing the genetic algorithm, these excluded entities are

added to the final ranking list in the order of their calculation.

More details will be given in Section 3.4 .

3.2. Framework overview

Traditional spectrum-based fault localization approaches often

calculate a suspicious score for every program entity. Different

from those approaches, our framework starts with potential can-

didates and then evaluates them by a fitness function. We assume

that the entities with value 1 indicate the existence of multiple

faults. Exploring all possible candidates is hard due to exponential

computational complexity. To solve the problem within a limited

amount of time, we propose to use the genetic algorithm to search

the best candidates in the whole search space.

Genetic algorithm (GA) is an adaptive heuristic search algorithm

(Mitchell, 1998) based on the ideas of natural selection and genet-

ics. It is widely used for generating solutions to optimization prob-

lems with complex search space. In GA, a population of candidate

solutions to an optimization problem is evolved toward better so-

lutions. Optimal solutions can be found after a certain number of

iterations.

GA commonly has four procedures including “Initialization”,

“Selection”, “Generation” and “Termination”. In the initialization

procedure, an initial candidate population is generated according

to different strategies (Winter et al., 1996). In the selection proce-

dure, a fitness function is used for evaluating the fitness value for

each candidate. Those candidates which have higher fitness value

will be better ones. Only the candidates whose fitness values are

high enough are selected for the next procedure. In the genera-

tion procedure, crossover and mutation occur and new candidates

are generated, evaluated and added to the population. The selec-

tion and generation procedures form a loop until the termination

procedure terminates the iterations.

Based on the genetic algorithm,FSMFL consists of four com-

ponents “population initialization”, “candidates evaluation”, “next

population generation” and “termination criterion setting”. First, a

strategy is chosen to initialize the population, and candidates in

the population are evaluated by a fitness function. Then, new pop-

ulations are generated through selection, crossover, mutation, ac-

cepting and replacement operators. Finally, a termination criterion

is used to determine whether to evolve the current population.

Fig. 2 shows the structure of the proposed framework. Details of

every component will be discussed in sequence in the remainder

of this section.

The pseudo-code of FSMFL is given in Algorithm 1 , which corre-

sponds to the four aforementioned four procedures. The parameter

values used in the pseudo-code will be discussed later.

3.3. Population initialization components

In FSMFL, any strategy can be used to create the first genera-

tion of candidate solutions. In practice, a random strategy usually

performs well (Winter et al., 1996). The random strategy produces
n initial population that every program entity has the equal pos-

ibility to be faulty. That is, in the initial candidate every entity has

he equal possibility to be set to 0 or 1. In Fig. 2 , different strategies

ean different im plementations are used to store genetic sequence

ata. Therefore, we randomly generate candidates and add them to

he initial population until the number of candidates reaches the

redefined population size. In the following population evolution

hase, the candidates are evaluated by a fitness function.

Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123 111

3

O

s

e

n

f

c

e

c

H

c

t

e

s

t

f

w

a

c

i

t

t

w

w

n

a

S

d

b

e

t

o

C

3

u

C

t

l

p

p

b

Algorithm 2 nextGeneration(population, γ , q , ε).

Input: current population population , crossover rate γ , mutation

rate q , simulated annealing possibility ε
Output: next generation: next Populat ion

1: count ← 0 , size ← length (population)

2: next Populat ion = { p | p ∈ population }
3: lowerBound = minimumF itness (Population)

4: while count < (2 ∗ size) do � children is twice the size of

parent

5: (P arent A , P arent B) ← random _ select(population)

6: (C hild A , C hild B) ← crossov er(P arent A , P arent B , γ)

7: C hild A ← mutat e (C hild A , q) � Mutate child with probability

q

8: C hild B ← mutat e (C hild B , q)

9: check 2 accept (next Populat ion, lowerBound, Child A , Child B , ε)

� check if accept the child

10: count = count + 1

11: end while

12: return next Populat ion � returning the best candidate set after

evolution

i

p

m

c

t

t

s

i

n

i

n

M

i

i

m

s

m

T

c

t

m

1

a

b

A

I

.4. Candidate evaluation components

Fitness function plays an important role in candidate evaluation.

ur fitness function is described as follows.

When there is only one fault in a program, all failed test cases

hould cover that faulty entity. So, the faulty entity has the high-

st n ef that equals to n f . The suspicious score is proportional to

 ef when two program statements have the same n ep for the six

ault localization formulas listed in Table 2 . So, the faulty entity

an have a good ranking. However, it is not certain that faulty

ntities have the highest n ef when there are multiple faults (be-

ause some correct entities may be covered by more test cases).

owever, subject to that any candidate must cover all failed test

ases, candidates with faulty entities have higher suspicious score

han the correct entities. Considering this situation, an aggregation

valuation strategy is exploited by our fitness function. We define

ome relevant notions before presenting the fitness function.

First, a weight value for every entity s is defined. This is similar

o Ochiai because we also think that an entity is more likely to be

aulty when it is covered by more failed test cases.

eight(s) =

n e f (s) √

n f ×
(
n e f (s) + n ep (s)

) (1)

Based on these weight values, the aggregated failure ratio f (C)

nd the aggregated passing ratio p (C) of a candidate C can be cal-

ulated by the following formulas. The term weight (s) indicates the

mportance of an entity, n ef (e i) represents its coverage by failed

est cases and c i represents whether a candidate includes this en-

ity. We multiply them and the result f (C) indicates this candidate’s

eighed coverage on failed test cases. The same is with p (C).

f (C) =

∑

1 ≤i ≤m

c i × n e f (e i) × weight (e i) (2)

p(C) =

∑

1 ≤i ≤m

c i × n ep (e i) × weight (e i) (3)

Finally, the suspicious score of a candidate C is defined as S (C),

hich is proportional to f (C) and inversely proportional to p (C). The

umerator and denominator are added by 1 at the same time to

void the division-by-zero exception.

(C) =

1 + f (C)

1 + f (C) + p(C)
(4)

There exist many invalid candidates in the search space. To re-

uce these invalid candidates, we restrict that any candidate must

e covered by all the failed test cases. That is, the following Cov-

rage (C) equals to 1 for a candidate C . Otherwise, the fitness func-

ion will be zero. Note that our framework is capable of integrating

ther effective fitness functions.

 ov erage (C) =

1

n f

∑

1 ≤i ≤n,t i ∈ T F
min

(

1 ,
∑

1 ≤ j≤m

t i j × c j

)

(5)

.5. Next population generation components

This component focuses on how to generate the next pop-

lation in our framework. There are 5 basic steps: Selection,

rossover, Mutation, Accepting and Replacement. Algorithm 2 gives

he pseudo-code.

In the Selection step, a rank selection operator is utilized to se-

ect parents for the next crossover step, in which both a single

oint crossover operator and a shuffle crossover operator are ap-

lied (Mitchell, 1998).

Generally speaking, the crossover operator ensures that every

it of candidates has a chance to be mutated by a very low rate
n the mutation step (Mitchell, 1998; Winter et al., 1996). The

urpose of mutation, which introduces random modification, is to

aintain diversity within the population and inhibit premature

onvergence. Different mutation operators can be used to achieve

he goal. The most commonly used operator, i.e. single bit muta-

ion, is used in the experiments. The mutation rate is empirically

et to 0.05 in practice, which can achieve competitive performance

n our experiments.

In the Accepting phase, candidates are evaluated using the fit-

ess function to decide whether they are good enough to survive

n the new population. In the last replacement step, we use the

ewly generated population for a further run of the algorithm.

eanwhile, a probabilistic technique named “Simulated Anneal-

ng” (SA) (Khachaturyan et al., 1979; 1981) is adopted for search-

ng global optimal solution rather than a premature solution. SA

akes the algorithm more robust when searching in a large search

pace and prevents the algorithm from becoming stuck at a local

inimum. We use ε to denote the acceptance probability of SA.

he higher the value of ε is, the more likely a bad solution is ac-

epted. Through accepting bad solutions, SA keeps the diversity of

he population and allows for a more extensive search for the opti-

al solution. Inspired by the optimization in SA (Kirkpatrick et al.,

983), the parameter ε is empirically set to 0.9 at the beginning

nd is decreased by a factor of 0.05 after every iteration until ε
ecomes 0.1. Pseudo-code is given in Algorithm 3 .

lgorithm 3 check2accept(population, lowerBound, Child A , Child B , ɛ).

nput: population is the current candidates set, lowerBound is

the threshold used for testing whether to accept the new

candidates(C hild A , C hild B), with respect to simulated annealing

probability ε.

1: if f itness (Child A) > = lowerBound then

2: population ← population ∪ { Child A }
3: else if random () < ε then

4: population ← population ∪ { Child A }
5: end if

6: if f itness (Child B) > = lowerBound then

7: population ← population ∪ { Child B }
8: else if random () < ε then

9: population ← population ∪ { Child B }
10: end if

112 Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123

f

g

T

(

4

S

C

C

S

(

o

T

L

t

J

m

M

(

4

u

r

i

m

a

m

a

(

L

c

m

a

e

a

u

t

n

n

f

e

o

(

p

n

r

f

e

t

n

p

c

4

o

i

W
3.6. Termination criterion setting

In the last process (Steimann and Bertschler, 2009b; Steimann

and Frenkel, 2012b), a termination criterion is predefined to deter-

mine whether a solution (i.e., current population) is good enough

or still needs to be further evolved. In each iteration, the total fit-

ness value of the current population is compared against that in

the previous generation to find out whether a better solution is

found. The algorithm continues until no better offspring is gener-

ated in a specific number of continuous iterations. If the termina-

tion criterion is satisfied, algorithm stops and the current solution

is treated as the best population.

The termination criterion we use is the number of continu-

ous iterations in which no better solution is generated. In our ex-

periments, we set the number empirically to 50 and this value

achieves satisfactory results in our empirical study.

3.7. Multiple faults localization for FSMFL

After the genetic algorithm component, the last surviving pop-

ulation contains a set of candidates. The following process is

adopted. First, these candidates are sorted by their fitness values

in the descending order. Multiple entities, which are contained in a

candidate, are sorted by their values of weight (s). Finally, the final

ranking list is constructed by adding entities from the candidate

list one by one according to its first appearance.

4. Empirical studies

We design three research questions for our experiments.

RQ1: Is FSMFL better than existing approaches ?

For this research question, we compare our approach with

seven single-fault localization approaches, including Tarantula

(Jones et al., 2002), Ochiai (Abreu et al., 2006), OP2 (Naish et al.,

2011), DStar (Wong et al., 2014), GP13 (Yoo, 2012), Ample

(Dallmeier et al., 2005) and Jaccard (Chen et al., 2002). A Linear

multi-fault localization approach (Dean et al., 2009) is chosen be-

cause it is also designed to evaluate the set of suspicious solu-

tions which is similar to our candidate solution. Please refer to

Dean et al. (2009) for specific calculation process of their method.

RQ2: Does FSMFL perform significantly better than existing

approaches by using statistical hypothesis test methods?

FSMFL is designed for solving multi-fault localization problem.

The first step to compare FSMFL with other baseline approaches is

to verify that there indeed exists a significant difference between

them. For this research question, three statistical hypothesis test

methods, including ANOVA (Analysis of variance) (Friedman, 1937),

LSD (Least Significant Difference) (Wilcoxon, 1992) and Bonferroni

Correction (Benjamini and Yekutieli, 2001), are adopted to measure

the difference between FSMFL and the other approaches.

RQ3: Is FSMFL’s Efficiency acceptable ?

Effectiveness is a significant issue when we apply FSMFL in

practice, especially for large-scale programs. We have optimized

our approach in several ways to improve the efficiency. For this

research question, we will measure time usage of our approach on

all the subjects.

4.1. Experiment setup

In this subsection, an experiment is conducted to evaluate the

diagnostic capability of our approach for real programs, and com-

pare the effectiveness and efficiency against other baseline ap-

proaches. Our experiments are conducted on a Linux Server with

a 3.00GHz Intel(R) Xeon(R) E5-2623 v3 CPU and 32GB physical

memory. The operating system is CentOS 7.0 and the compiler

is GCC version 3.8.5 and JDK 1.7.0_79. FSMFL and other existing
ault localization approaches are implemented using the Go pro-

ramming language. In the experiment, we compare FSMFL against

arantula, Ochiai, OP2, DStar, GP13, Ample, Jaccard and Linear

 Dean et al., 2009).

.1.1. Subject programs

Our benchmarks consist of Siemens programs, Linux programs,

pace program, JFreeChart program, Joda-Time program, Apache

ommons Lang program, Apache Commons Math and Google’s

losure program. The first three programs are downloaded from

IR (Do et al., 2005), the rest are downloaded from defects4j

 Just et al., 2014). The Siemens programs have 174 to 539 lines

f code (LOC), with 1052 to 5542 test cases in the test suite.

he three programs for Linux are gzip (6576 LOC), grep (12635

OC) and sed (7125 LOC). The Space program (9126 LOC) has 3814

est cases. JFreeChart program (52104 LOC) has 2193 test cases.

oda-Time program (13630 LOC) has 4041 test cases. Apache Com-

ons Lang (11844 LOC) has 2291 test cases and Apache Commons

ath (42684 LOC) has 4378 test cases and Google Closure program

47446 LOC) has 7911 test cases.

.1.2. Fault injection and construction of real multi-fault versions

Empirical studies in software testing are usually difficult and

nrealistic because real bugs are rarely used in software testing

esearch (Just et al., 2014). Extracting and reproducing real bugs

s challenging. As a result, manual faults or mutants generated by

utation testing are commonly used as a substitute.

In order to build manual test suites. Versions with single fault

re downloaded from SIR (Do et al., 2005), while versions with

ultiple faults are constructed by manually injecting faults which

re based on original faults.

We also downloaded 5 real large-scale programs from Defects4j

 Andrews et al., 2005). On average there are more than 30,0 0 0

OCs. The programs are JFreechart, Closure compiler, Apache

ommons-lang, Apache commons-math and Joda-Time that are

aintained by Google Company, Apache Foundation, etc. All have

 number of real faults.

Defects4j collects both buggy and fixed program revisions for

very fault. Figs. 3 and 4 show the detailed information of No.5

nd No.40 bugs in Apache commons-math program. In both fig-

res, the buggy version and faulty lines are shown on the left, and

he fixed version is listed on the right. As shown in the figure, a

ew combined multi-buggy version can be obtained by concate-

ating the faulty lines of two buggy versions manually. Real multi-

ault programs collected from defects4j are used for verifying the

ffectiveness of FSMFL.

We evaluate the effectiveness of approaches with single-fault

n all programs, and with multi-fault on four Siemens programs

i.e., print_tokens, print_tokens2, replace and tot_info), three Linux

rograms Space program and five real programs in Defects4j. The

umber of bugs in multi-fault versions is two, three or five. The

eason to exclude the other three Siemens programs in the multi-

ault experiment is that they have too few executable lines to gen-

rate enough multi-fault versions. Table 3 shows the characteris-

ics of the subject programs in terms of program name, source, the

umber of single-fault and multi-fault versions, LOC of the whole

rogram, LOC covered by the test cases and the number of test

ase.

.2. Optimization and implementation

We consider the following aspects to improve the performance

f FSMFL: memory usage, parallel computation, and algorithmic

mprovement. Firstly, every candidate is represented by a bit string.

e choose raw uint64 array as the basic data structure, by which

Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123 113

Fig. 3. No.5 bug of Apache commons-math Program.

Fig. 4. No.40 bug of Apache commons-math Program.

a

a

g

c

s

q

t

f

t

e

i

s

s

h

r

r

t

g

e

4

2

r

n

p
ny length of chromosomes can be easily represented and the stor-

ge space can be tremendously reduced. Secondly, using Go lan-

uage and parallel computing technique, we significantly improve

omputational efficiency and speed up the crossover and mutation

teps. As for the selection process, a combination of the heap and

uick sort is adopted to reduce time complexity of the algorithm

o O (log n).

With the optimized genetic algorithm implementation, the

ramework can support large-scale search space. As for implemen-

ation, the population size is configured to 500 and every new gen-

ration generates 10 0 0 children. A rank selection operator is used

n the selection step. Both a single point crossover operator and a

huffle crossover operator are used in the crossover step. Single bit

tring mutation operator is adopted, which means each position
as the same probability to be chosen to mutate. The crossover

ate is set to 0.99 and mutation rate is set to 0.05. All the algo-

ithm’s parameters such as population size, crossover rate, muta-

ion rate and etc. are empirically chosen according to the standard

enetic algorithm (Winter et al., 1996). The value of these param-

ters can achieve competitive results in our empirical study.

.3. Performance metrics for evaluation

In single-fault localization problem, the EXAM (Wong et al.,

008) metric is usually used to evaluate the effectiveness of the

esult. The metric measures the percentage of the entities one

eed to examine before finding the faulty entity. For a specific

rogram, the localization result is better when the EXAM value is

114 Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123

Table 3

Program used in experiment.

Program Source #Single-Fault Version (#Multi-fault Version) All LOC Executable LOC #Test Case

print_tokens Siemens 20(33) 539 203 4130

print_tokens2 Siemens 20(36) 489 201 4115

replace Siemens 21(45) 507 273 5542

schedule Siemens 13 397 166 2650

schedule2 Siemens 14 299 146 2710

tcas Siemens 18 174 73 1608

tot_info Siemens 31(48) 398 138 1052

gzip Linux 7(9) 6576 1744 213

grep Linux 2(4) 12635 3197 470

sed Linux 6(3) 7125 2027 360

space space 37(39) 9126 3814 13585

lang Defects4J 17(30) 11844 1391 2291

chart Defects4J 9(5) 52104 1193 2193

time Defects4J 6(4) 13630 1131 4041

math Defects4J 13(6) 42684 936 4378

closure Defects4J 3(1) 47446 5631 7911

a

o

4

p

m

B

t

smaller. However, EXAM metric cannot be applied to multi-fault lo-

calization problem that considers all fault locations at the same

time. There are no general metrics to estimate the performance

of multi-fault localization algorithms. Abreu et al. (2009) proposed

a wasted effort metric to evaluate their multi-fault localization

method. But the metric only considers the statements in the result

set. Dean et al. (2009) only compared their linear-based algorithm

against single fault localization algorithms rather than multi-fault

localization algorithms. Coverage-based algorithms (Steimann and

Bertschler, 2009b; Steimann and Frenkel, 2012b) do not attempt

to locate all the faulty statements as FSMFL does. Hence, we pro-

pose two metrics (EXAM F and EXAM L) based on EXAM to measure

the performance of multi-fault localization algorithm in finding the

first and the last faulty statements. Both metrics are used in em-

pirical studies to verify the effectiveness of FSMFL compared with

single-fault as well as multi-fault localization algorithms.

Definition 4 (EXAM F). It represents the percentage of entities that

have to be examined until the first faulty entity is found. For ex-

ample, Tarantula’s EXAM F can be calculated by 4/17 in Fig. 1 .

Definition 5 (EXAM L). It represents the percentage of entities that

have to be examined until the last faulty entity is found. For ex-

ample, Tarantula’s EXAM L can be calculated by 10/17 in Fig. 1 .

EXAM F is more useful in the scenario of finding a fault one at

a time. On the other hand, EXAM L is more suitable in the scenario

of finding all faults at the same time, such as finding faults for

compiler programs. A smaller EXAM L means that the locations of

all the faults have good rankings in the suspicious ranking list.

Even though EXAM L is able to indicate the percentile of the last

faulty statement in the ranked list, it is insensitive to the faulty po-

sition in ranked list. To remedy the problem, we introduce a posi-

tion based metric called Top-N to further evaluate the effectiveness

of our approach.

Definition 6 (Top-N) . It represents the number of programs that

an algorithm ranks all faulty statements among the top N positions

in the ranked list.

Intuitively, the smaller the value of N in Top-N , the stricter

the metric. For example, Top-3 metric requires that all faults are

ranked within top 3 positions in the ranked list. Specifically, for

the program shown in Fig. 1 , Tarantula locates the last fault at the

10 th position while FSMFL locates the last one at the 5 th position.

While both Tarantula and FSMFL pass the Top-10 metric, Tarantula

fails Top-9 . Since Top-N metric is more sensitive to the fault posi-

tions in a ranked list, it is more effective than others when ver-

ifying the accuracy of fault localization. EXAM , EXAM and Top-N
F L
re all used to compare the performance of our approach against

thers in our experiments.

.4. Hypothesis testing methods

A group of experiments between our approach and existing ap-

roaches are conducted on programs with both single fault and

ultiple faults. Several statistical methods, including ANOVA, LSD,

onferroni Correction, Wilcoxon Signed Rank test and Cohen’s d

est, are adopted to analyze the experimental results.

1. Analysis of variance (ANOVA) (Friedman, 1937) is used to an-

alyze the difference among group means and their variance.

ANOVA provides a statistical test on whether the means of sev-

eral groups are equal. ANOVAs are useful for comparing three

or more means for statistical significance.

2. Wilcoxon Signed Rank (WSR) (Wilcoxon, 1992) is a nonpara-

metric test for comparing samples. It is used as an alterna-

tive to ANOVA when the normal assumption is not satisfied. It

is useful for determining whether two dependent samples se-

lected from populations have the same distribution.

3. Least Significant Difference (LSD) (Wilcoxon, 1992) is a mea-

sure of how much of a difference between means must be ob-

served before one can draw a conclusion that the means are

significantly different. However, this technique can be used only

when ANOVA result is relatively significant.

4. Bonferroni Correction (Benjamini and Yekutieli, 2001) is used to

counteract the problem of multiple comparisons.

5. Cohen’s d (Sawilowsky, 2009) is adopted to measure the effec-

tive size of different datasets.

Experimental process includes the following:

1. Calculate the average EXAM value of FSMFL and other baseline

approaches by executing each program 30 times.

2. Use ANOVA test method to analyze the difference between

the means of all the approaches and compute EXAM values

and variance. Meantime, LSD is used for measuring the degree

of the difference between two specific approaches and decide

which approach is better. Moreover, Bonferroni Correction is

used to counteract the problem of multiple comparisons. Bon-

ferroni is another multiple comparison method like LSD. It also

can only be used when the ANOVA result is significant. The us-

age is similar to LSD, but Bonferroni cares more about the false

discovery rate.

3. WSR is adopted in EXAM L to identify whether samples of dif-

ferent approaches come from different distributions. Cohen’s d

(Sawilowsky, 2009) is also used to measure the effectiveness

Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123 115

Table 4

ANOVA test result on single-fault version.

Source Sum of Squares Degrees of Freedom Mean Squares Chi-Square P-Value

Columns 2702.28 8 337.785 451.83 1 . 49622 e −99

Error 8445.72 1856 4.55

Total 11,148 2096

Fig. 5. Visualization of single-fault localization result.

4

l

t

w

s

s

e

B

d

p

4

g

s

a

h

t

4

h

h

p

4

v

1

w

a

i

L

c

i

v

a

L

x

s

L

G

T

r

b

b

t

t

a

t

i

s

l

p

4

o

E

f

o

t

e

a

a

J

t

a

e

o

o

4

i

e

E

i

O

i

between FSMFL and other baseline approaches in multi-fault

versions (when considering EXAM L).

4. Verifying the effectiveness of FSMFL against other baseline ap-

proaches by using Top-N metric and visualizing the EXAM F ,

EXAM L and TOP-N experimental results.

.5. Experiments for single-fault versions

Though FSMFL aims at solving the multi-fault localization prob-

em, it can also be applied to programs with only a single fault. In

his subsection, we compare the effectiveness of FSMFL algorithm

ith Tarantula, Ochiai and OP2. As shown in Table 3 we choose 189

ingle-fault versions of C programs from Siemens, Linux and space

uite, 48 single-fault versions of Java programs from Defects4j. We

xecute 30 times for each program and calculate the average EXAM .

ased on these EXAM values, following hypothesis tests are con-

ucted to verify the effectiveness between FSMFL and other ap-

roaches.

.5.1. Result analysis with single-fault versions

The results on single-fault versions are shown in Fig. 5 . They

ive the percentage of faulty versions whose scores are within the

pecified segment. Each segment indicates one percentage, For ex-

mple, 0%–1% or 43%–44%.

It can be observed from Fig. 5 that OP2, Ochiai, DStar, Ample

ave a better performance. FSMFL and Linear are close to Taran-

ula that can localize nearly same percentage of faults within 20%,

0%, 60% entities. Jaccard and GP13 have poor performance when

andling single-fault problems.

Statistical hypothesis test results indicate that FSMFL does not

ave a worse performance than other single-fault localization ap-

roaches.

.5.2. Hypothesis test with single-fault versions

ANOVA analysis is conducted among 9 approaches on EXAM

alues. Detailed results are shown in Table 4 . The p-value is
.49622 e −99 , far smaller than 0.05. According to hypothesis testing,

e reject the original hypothesis based on 95% probability. Such

 small p-value usually means the difference among 9 approaches

s significant. More statistical hypothesis test experiments such as

SD and Bonferroni can be conducted for confirmation.

The LSD comparison experiments with 0.05 significant level are

onducted and the results are shown in Fig. 6 . The LSD value

ndicates the approach performance, the approach with low LSD

alue is better than the one with a high LSD value. In Fig. 6 , 9

pproaches (Tarantula, Ochiai, OP2, DStar, GP13, Ample, Jaccard,

inear, FSMFL) are represented in the y-axis. A smaller value in

-axis means the corresponding approach is better. Fig. 6 also

hows the Bonferroni test result that has the similar criteria with

SD.

In Fig. 6 , we can get the same result that Ochiai, OP2, DStar,

P13 and Ample belong to the first echelon, FSMFL, Linear and

arantula belong to the second echelon and Jaccard gives the worst

esult. As the LSD result shows, although FSMFL does not have the

est result among 9 approaches, it is still an acceptable and feasi-

le approach even for single-fault localization.

Table 5 further shows the effectiveness on single-fault localiza-

ion among these approaches. In the table, a check mark means

hat the approach above is better than the approach on the left. If

n approach has more check marks in its column, it performs bet-

er in this metric. Similarly, if an approach has more check marks

n its row, it performs worse in this metric. We get the same re-

ult that FSMFL, Linear and Tarantula belong to the second eche-

on. Thus, FSMFL can also be used to solve single-fault localization

roblem.

.6. Experiments for multiple-fault versions

The main goal of FSMFL is for multi-fault localization. A set

f experiments are conducted in this section. Specifically, EXAM F ,

XAM L and Top-N are used for evaluating and comparing the ef-

ectiveness between FSMFL and other baseline approaches. Thor-

ugh analysis of the experimental results is discussed to support

he conclusion that FSMFL performs well in multi-fault localization,

specially under EXAM L metric.

As shown in Table 3 , there are totally 189 single-fault versions

nd 217 multi-fault versions of C programs (from Siemens, Linux

nd space), 48 single-fault versions and 46 multi-fault versions of

ava programs (from Defects4j). We execute each program for 30

imes and calculate the average EXAM F and EXAM L to compare the

pproaches. Based on the EXAM F and EXAM L values, the hypoth-

sis test is conducted to verify the effectiveness of FSMFL. More-

ver, Top-N metric is used to verify the accuracy and effectiveness

f FSMFL.

.6.1. Result analysis with multi-fault versions

Experiments using EXAM F and EXAM L metrics

As shown in Table 3 , we evaluate the approaches by consider-

ng both EXAM F and EXAM L . We execute each program 30 times by

ach of the 9 approaches and calculate the average of EXAM F and

XAM L values. Fig. 7 depicts the results of 9 different fault local-

zation approaches on multi-fault versions. It can be observed that

P2 does not perform as well as in single-fault localization exper-

ments.

116 Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123

Fig. 6. LSD and Bonferroni result on single-fault versions.

Table 5

Multiple comparison for single-fault versions.

Tarantula Ochiai OP2 Dstar GP13 Ample Jaccard Linear FSMFL

Tarantula
√ √ √ √ √

Ochiai
√ √

OP2

Dstar
√ √

GP13
√ √

Ample

Jaccard
√ √ √ √ √ √ √ √

Linear
√ √ √ √ √

FSMFL
√ √ √ √ √

Fig. 7. Visualization of multi-fault localization result.

(

e

4

p
Sub-figures in the left of Fig. 7 shows that FSMFL works as

well as other approaches (Tarantula, Ochiai, GP13, Ample, Linear)

in finding the first fault in multi-fault problems using EXAM F met-

ric. It indicates that FSMFL is a feasible approach for finding the

first fault under multi-fault problems. As for the EXAM F experi-

ments, it can be observed from the right of the Fig. 7 that FSMFL

and Linear algorithm are better than other approaches.

a

l

f

For a further verification, statistical hypothesis test methods

ANOVA, LSD and Bonferroni) are adopted to check if the differ-

nce in performance is significant in the following section.

.6.2. Hypothesis test with multiple-fault versions

ANOVA is conducted for hypothesis test of 9 approaches. The

-value of two EXAM metrics (EXAM F , EXAM L) are listed in Table 6

nd 7 . Both p-values (4 . 28756 ∗ e −99 and 6 . 09209 ∗ e −89) are much

ess than 0.05, which indicates 9 approaches have significant dif-

erence no matter using EXAM or EXAM .
F L

Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123 117

Table 6

ANOVA test result on multi-fault versions using EXAM F .

Source Sum of Squares Degrees of Freedom Mean Squares Chi-Square P-Value

Columns 3123.9 8 390.482 482.36 4 . 28756 e −99

Error 10554.1 2104 5.016

Total 13,678 2375

Table 7

ANOVA test result on multi-fault versions using EXAM L .

Source Sum of Squares Degrees of Freedom Mean Squares Chi-Square P-Value

Columns 2681.98 8 335.248 434.98 6 . 09209 e −89

Error 10340.02 2104 4.914

Total 13,022 2375

Fig. 8. LSD and Bonferroni result on multi-fault versions using EXAM F .

a

a

a

d

o

e

o

t

A

v

F

n

J

t

F
LSD and Bonferroni test results are shown in Fig. 8 using EXAM F

nd Fig. 9 using EXAM L . Both seeded programs (Siemens and Linux)

nd large-scale real programs(Defects4j) are used to verify FSMFL

nd other baseline approaches separately. We analyze the result in

etails in the following section.

Hypothesis test using EXAM F metric.

In Fig. 8 , two sub-figures on the top give experimental results

n seeded programs while two sub-figures at the bottom show the

xperimental results on large-scale real programs. Two sub-figures

n the left are LSD test while two on the right are Bonferroni
est. As previously explained, Tarantula, Ochiai, OP2, DStar, GP13,

mple, Jaccard, Linear, FSMFL are listed in the y-axis. The smaller

alue in x-axis means the better the corresponding approach. In

ig. 8 , OP2, Ample and Jaccard have high mean values and are sig-

ificantly different from the other 6 approaches.

The LSD and Bonferroni results indicate that OP2, Ample and

accard have worse performance in finding the first fault (EXAM F)

han the other no matter on seeded or real large-scale programs.

SMFL is similar to other 5 approaches. Although FSMFL is not the

118 Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123

Fig. 9. LSD and Bonferroni result on multi-fault versions using EXAM L .

Table 8

Multiple comparison for multi-fault versions using EXAM F .

Tarantula Ochiai OP2 Dstar GP13 Ample Jaccard Linear FSMFL

Tarantula

Ochiai

OP2
√ √ √ √ √ √

Dstar
√ √ √ √

GP13
√ √ √ √

Ample
√ √ √ √ √ √

Jaccard
√ √ √ √ √ √ √ √

Linear

FSMFL

g

p

h

t

u

t

t

(

m

L

best approach in EXAM F , we can still find the first fault as effec-

tively as the other 5 approaches in practice.

Table 8 shows the effectiveness measured by EXAM F among

these approaches. It can be observed that FSMFL, Tarantula, Lin-

ear and Ochiai perform well in seeded programs while FSMFL and

Linear perform best in both seeded and large-scale realistic pro-

grams.

Hypothesis test using EXAM L Metric

Two sub-figures on the top in Fig. 9 give experimental results

on seeded programs using EXAM L , and two at the bottom on large-

scale real programs. Two sub-figures on the left show LSD test

while two on the right Bonferroni test.
Fig. 9 indicates that both FSMFL and Linear approaches have

ood results and perform significantly better than other 7 ap-

roaches in terms of EXAM L metric. Jaccard, OP2 and Dstar have

igh mean value show in Fig. 9 and are significantly different from

he other 6 approaches. The experimental results indicate FSMFL

sually outperforms other approaches in terms of EXAM F .

Table 9 gives a clear picture of comparison. The notations in the

able have been described in Section 4.5 . Hypothesis test indicates

hat FSMFL has similar performance with that of other approaches

Tarantula, Ochiai, GP13, Ample, Linear) in finding the first fault in

ulti-fault localization in terms of EXAM F . Meanwhile, FSMFL and

inear outperform the rest in terms of EXAM L .

Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123 119

Table 9

Multiple comparison for multi-fault versions using EXAM L .

Tarantula Ochiai OP2 Dstar GP13 Ample Jaccard Linear FSMFL

Tarantula
√ √ √

Ochiai
√ √

OP2
√ √ √ √ √ √

Dstar
√ √ √ √

GP13
√ √ √ √

Ample
√ √ √ √ √ √ √

Jaccard
√ √ √ √ √ √ √ √

Linear
√

FSMFL

Table 10

Wilcoxon signed rank test (p -value).

Tarantula Ochiai OP2 Dstar GP13 Ample Jaccard Linear

4 . 1548 e −05 2 . 7060 e −07 8 . 7571 e −17 1 . 1531 e −15 1 . 1531 e −15 2 . 2436 e −19 5 . 2730 e −29 0.2178

Table 11

Effect size test (Cohen’s d between FSMFL and other 8 approaches).

Tarantula Ochiai OP2 Dstar GP13 Ample Jaccard Linear

0.131514 0.393969 0.637708 0.613346 0.613346 0.638572 0.953559 0.05974

r

d

s

t

i

t

v

v

f

f

t

s

0

i

m

c

i

w

a

c

s

s

m

4

m

t

g

f

r

s

b

m

f

p

p

Table 12

Average length of ranked list that FSMFL suggested.

Program Source Average length of ranked list ALL LOC

print_tokens Siemens 94 539

replace Siemens 104 507

schedule2 Siemens 53 299

tcas Siemens 18 174

tot_info Siemens 38 398

gzip Linux 153 6578

grep Linux 179 12,635

sed Linux 127 7125

space Space 624 9126

lang Defects4J 339 11,844

chart Defects4J 106 52,104

time Defects4J 287 13,630

math Defects4J 226 42,684

closure Defects4J 328 47,446

Table 13

Number of programs that all faults are successfully located.

Methods Top-3 Top-5 Top-8 Top-15 Top-25

Jaccard 0 0 0 1 2

OP2 0 0 0 1 6

DStar 4 6 7 13 18

Ample 0 0 0 1 3

Ochiai 7 10 11 18 21

DP13 4 6 7 13 18

FSMFL 19 29 33 46 52

Linear 7 11 12 14 20

Tarantula 14 20 25 31 34

r

a

I

a

v

T

a

s

n

F

N
For further verifying the effectiveness of FSMFL, a nonparamet-

ic test WSR is adopted. WSR does not assume the data are normal

istributed. It can be used to determine whether two dependent

amples are selected from populations having the same distribu-

ion. The p-value between FSMFL and other 8 approaches are listed

n Table 10 .

All the p-values are much smaller than 0.05 in Table 10 except

he one with Linear. According to the empirical result, FSMFL is ob-

iously different from other approaches except for Linear. As the p-

alue for Linear is 0.2178, the hypothesis that FSMFL and Linear are

rom different distribution does not hold. The similar result can be

ound from the effect size experiment shown in Table 11 where all

he Cohen’s d values between FSMFL and other 8 approaches are

hown (Only the d-value between FSMFL and Linear is less than

.1, which means only the difference between FSMFL and Linear

s relatively small). Hence more experiments using various Top-N

etrics are performed in the next section to verify whether FSMFL

an locate all the faults faster than other approaches by consider-

ng only top N positions in the ranked list.

In summary, based on the analysis on the experimental results,

e can draw a conclusion that FSMFL is more effective than other

pproaches (i.e., Tarantula, Ochiai, OP2, Dstar, GP13, Ample and Jac-

ard) in finding both the first and the last faulty statements at the

ame time. But the advantage of our approach over Linear is not

ignificant. Hence, we conduct analysis by considering the Top-N

etric to further verify the advantage of our approach over Linear.

.6.3. Experiments using Top-N metric

Nowadays, a large-scale software development tends to be

odularized, which encourages each function or class to follow

he single responsibility principle (SRP) (Martin, 2002). SRP sug-

ests that each function has only a single responsibility. Thus the

unctions that follow the principle usually have small LOC. As a

esult, most test cases usually cover only a small fraction of the

ource code. Fig. 10 depicts the test coverage information of the

enchmarks used in our empirical studies. The results show that

ost test cases cover a small number of LOC (e.g., 0–200). There-

ore the search space for fault localization is not very large if these

rograms follow SRP.

Table 12 shows the average length of the ranked lists that are

roduced by FSMFL. In Siemens programs, the average lengths
ange from 18 to 104. In Linux programs, the average lengths are

bout 150. In Defects4J, the average lengths range from 106 to 339.

n space, the average is 624. The experiments reveal that the aver-

ge length of the ranked lists is not very large.

Five metrics (Top-3, Top-5, Top-8, Top-15, Top-25) are used to

erify the accuracy and effectiveness of the nine approaches.

able 13 summarizes the experimental results. Specifically, there

re 19 programs that FSMFL succeeds in locating all faults by con-

idering only the top 3 positions in ranked lists. Moreover, the

umber of programs that all faults are successfully located by

SMFL is always more than the others when using other 4 Top-

 metrics. Fig. 11 shows that FSMFL outperforms other baseline

120 Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123

Fig. 10. LOC of failed test cases of the multi-fault programs in the benchmark.

Fig. 11. Experiments of locating all faults. Five metrics (Top-3, Top-5, Top-8, Top-15, Top-25) are used to test the 9 approaches. Each bar indicates the number of programs

with all faults located among top N positions.

p

P

s

s

e

t

D

e

t

p

m

e

C

p

t

T ime = 6 . 12 × LOC + 0 . 04 × T estCaseNumber (6)
approaches in locating all faults when using 5 Top-N metrics in a

more intuitive way.

Fig. 12 depicts more experiments based on 200 metrics from

Top-1 to Top-200 . The X-axis indicates the value of N in top-N, and

the Y-axis represents the number of programs that all faults are lo-

cated within top N positions. For instance, there are nearly 50 pro-

grams that FSMFL can locate all faults by considering only top 20

positions in its ranked lists. As expected, the experimental results

show that the number of programs with all faults found grows if

more positions in the ranked lists are considered. Among all the

approaches, FSMFL outperforms all other 8 baseline approaches re-

gardless the value of N . Based on the results, we can conclude that

FSMFL is superior to other 8 approaches in finding all faults.

4.7. Efficiency

The time required for a fault localization approach includes two

parts. Part I involves data collection. Part II uses the data collected

in Part I to locate faults. All spectrum-based fault localization ap-
roaches require the same set of data, so they have same cost in

art I. Part II contains two processes. In the first process, time is

pent on loading coverage information and collecting execution re-

ults. In the second process, time is spent on the computation and

volution of the genetic algorithm. Table 14 gives the computa-

ional time by Part II of FSMFL on Siemens, Linux and space and

efects4j suites. The computational time is the average of 100 ex-

cutions for every faulty version of the program. It can be observed

hat the computational time is less than 23 s even for large-scale

rograms, which is acceptable in the real development environ-

ent.

It can also observe that the computational time increases with

xecutable LOC (i.e. LOC) and the number of test cases (i.e. Test-

aseNumber). We use the least-square method (Stigler, 1981) to

erform a correlation test on all the executions and get a fit func-

ion as following:

Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123 121

Fig. 12. Multi-fault localization experiments using 200 metrics.

Table 14

The computational time of locating multi-fault by Part II of FSMFL.

Program Executable LOC Test cases number FSMFL using Go

tot_info 138 1052 1.15 s

print_tokens2 201 4115 1.76 s

print_tokens 203 4130 2.48 s

gzip 1744 213 2.02 s

sed 2027 360 1.97 s

replace 273 5542 3.47 s

grep 3197 470 2.03 s

space 3814 13585 22.97 s

lang 1391 2291 0.9 s

chart 1193 2193 0.6 s

time 1131 4041 1.1 s

math 936 4378 0.9 s

closure 5631 7911 12.9 s

4

O

s

p

F

f

F

F

w

c

4

o

p

t

f

2

s

s

a

p

t

p

e

c

p

i

i

p

g

w

v

m

s

f

f

a

I

b

C

t

t

s

o

5

s

c

w

l

s

e

i

h

a

t

s

N

p

t

d

a

c

2

c

d

Z

g

S

D

a

c

e

l

m

b

c

S

t

t

t

p

G
.8. Summary

For the RQ1, our approach is compared against Tarantula,

chiai, OP2, DStar, GP13, Ample, Jaccard and Linear. The result

hows that FSMFL has better performance on subjects with multi-

le faults and has similar performance on subjects with one fault.

or RQ2, statistical hypothesis methods like ANOVA, LSD and Bon-

erroni Correction are used for measuring the difference between

SMFL and other baseline approaches. The results indicate that

SMFL is indeed significantly different from the others. For RQ3,

e evaluate time usage of FSMFL and confirm that the cost is ac-

eptable.

.9. Threats to validity

In this subsection, we discuss the potential threats to validity in

ur empirical study.

Threats to external validity are about whether the observed ex-

erimental results can be generalized to other subjects. To guaran-

ee the representativeness, we choose a large number of programs

rom the widely used Simens, Linux and Defects4J (Just et al.,

014; Andrews et al., 2005) suites. These subjects include large-

cale programs with over 50,0 0 0 LOC, and industrial programs

uch as Apache Commons-Lang Apache Commons-Math, FreeChart

nd Closure Compiler. Our experiments consider both C and Java

rograms and include both artificial and real bugs. We realize that

here is no perfect empirical study and there must be some tricky
rograms and bugs not considered by our experiments. We plan to

nlarge our subjects in our future work.

Threats to internal validity are mainly concerned with the un-

ontrolled internal factors that might have an influence on the ex-

erimental results. The main internal threat is the potential errors

n our implementation. To reduce this threat, pair programming

s used and experimental results are carefully examined. Secondly,

arameters are empirically chosen according to the standard GA al-

orithm (Mitchell, 1998). After testing different sets of parameters,

e come to the conclusion that different parameter values have

ery little influence on the experimental results.

Threats to construct validity are about whether the perfor-

ance metrics used in the empirical studies reflect the real-world

ituation. In real cases, programs commonly have more than one

aults. We believe EXAM F is a reasonable metric to measure the ef-

ectiveness of locating the first fault. Similarly, EXAM L is a reason-

ble metric to measure the effectiveness of locating all the faults.

n order to verify FSMFL is indeed statistically different from other

aseline approaches, ANOVA, LSD (Wilcoxon, 1992) and Bonferroni

orrection (Benjamini and Yekutieli, 2001) are adopted to conduct

horough experiments. We realize that design of effective metric

o evaluate the effectiveness of multi-fault localization problem is

till in its infancy. Therefore, designing more reasonable metric is

ur future work.

. Related work

There is a large body of work on automatically localizing faulty

tatements in a piece of software. With the increase of software

omplexity, software faults become more difficult to be identified,

hich increases debugging cost (Wong et al., 2016). Dynamic fault

ocalization (Jones et al., 2002; Xie et al., 2013) localizes faulty

tatements by leveraging the execution information from test case

xecution when the abnormal behavior was detected during test-

ng. Among them, spectrum-based fault localization approaches

ave shown their effectiveness and efficiency in locating faults

utomatically (Wong et al., 2016). Spectrum-based fault localiza-

ion works by ranking the program statements by their suspicious

cores that can be calculated based on the spectrum information.

umerous spectrum-based fault localization approaches have been

roposed to localize multiple faults and widely used.

Jones et al. (2007) introduced an approach to cluster failed

est cases into groups, and localize each fault by different

evelopers using single-fault localization approach. It is semi-

utomatic and its effectiveness is affected by the accuracy of

lustering. In addition, Abreu and his colleagues (Abreu et al.,

009) proposed BARINEL that combines spectrum-based fault lo-

alization and model-based diagnosis. BARINEL uses faulty can-

idates and Bayesian Reasoning to deduce entity probabilities.

hang et al. (2017) reported a comprehensive study that investi-

ates the impact of cloning failed test cases on the effectiveness of

FL techniques. Perez et al. (2017) proposed a new metric, called

DU, for spectrum-based fault localization approaches with high

ccuracy. Moreover, Dean et al. (2009) presented a multi-fault lo-

alization approach based on a linear programming model. How-

ver, the suspicious function they used must be converted to a

inear model. Thus, it cannot be used if a conversion to linear

odel is infeasible. Compared with their approach, ours uses a

etter suspicious function and both linear or non-linear models

an be plugged into FSMFL. Steimann and Bertschler (2009a) and

teimann and Frenkel (2012a) proposed a coverage-based loca-

or for multiple faults by assuming a probability distribution of

he number of faults and then they apply optimization techniques

o reduce algorithm complexity. However, the algorithm is ex-

onential and the experiments confirm that it is not scalable.

ong et al. (2012) developed an indicator that can adapt existing

122 Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123

g

a

t

A

e

f

r

p

o

w

s

(

S

b

o

t

d

i

f

6

w

e

s

b

i

f

t

s

t

A

e

R

A

A

A

A

B

C

C

D

single-fault localization approach to multi-fault localization. But in

the process, it needs to interact with a programmer to identify the

faults. The approach we proposed is a new multi-fault localization

approach based on genetic algorithm. We design a weighted fitness

function and re-implement the genetic algorithm using a different

strategy.

Most existing fault localization approaches are optimized for

programs with only one fault (Hamill and Goseva-Popstojanova,

2009; Thung et al., 2012). To address this limitation, some re-

searchers have started to investigate the influence of multiple

faults on the effectiveness of fault localization approaches (Debroy

and Wong, 2009; DiGiuseppe and Jones, 2011; Xue and Namin,

2013). Their results imply that different faults may interfere with

each other and significantly decrease the accuracy of the existing

single-fault oriented localization approaches. However, the recent

multi-fault localization approaches still focus on revising existing

algorithms rather than redesigning new algorithms for multi-fault

localization. For instance, Gong et al. proposed an indicator to de-

termine whether to continue searching when one fault has been

found (Gong et al., 2012). This mechanism tries to simplify the

search space and stop the search procedure as soon as possible.

Cheman et al. revealed that Clean Program Assumption does not al-

ways hold, which may raise a critical threat to the validity of exist-

ing fault localization approaches (Chekam et al., 2017). Song et al.

believed that SFL is not suitable for all programs and the effec-

tiveness of SFL should be evaluated before its adoption in practice

(Song, 2014). Xuan et al. proposed a concept of spectrum driven

test case purification based on existing approaches (like Tarantula)

for improving fault localization (Xuan and Monperrus, 2014). Wu

et al. suggested to locate fault by using the crash stack information

in crash reports (Wu et al., 2014). With the help of specifications,

Gopinath et al. improved the effectiveness of SFL (Gopinath et al.,

2012). Structured Information Retrieval is adopted to improve the

localization performance (Saha et al., 2013). Some other researches

(Thung et al., 2012; Yoo et al., 2014; Kim and Lee, 2014) show that

fault localization can facilitate debugging activities to some extent,

but can still be improved in many aspects (Steimann et al., 2013).

Tang et al. (2014, 2016) proposed some more practical fault local-

ization approaches based on both coverage and version informa-

tion. Sun and Podgurski (2016) investigated coverage-based statis-

tical fault localization metrics and found the common properties

of most effective metrics. Moreover, Tang et al. (2017) proposed

an empirical framework of accuracy graphs to reveal the relative

accuracy of formulas. This framework makes it possible to reveal

accuracy relationships among the formulas which have not been

discovered by theoretical analysis.

The discussion so far reveals that most of the recent work fo-

cus either on the effectiveness of applying SFL to real programs

(Song, 2014; Pearson, 2016; Pearson et al., 2017; Xia et al., 2016)

or on performance enhancement by various techniques (e.g. fin-

ish searching as soon as possible (Gong et al., 2012), preprocessing

test cases (Chekam et al., 2017; Song, 2014; Xuan and Monperrus,

2014), utilizing additional information (Wu et al., 2014; Gopinath

et al., 2012; Saha et al., 2013)) rather than developing new multi-

fault localization approaches.

In the meantime, using meta-heuristic algorithms to solve soft-

ware engineering problems is a popular idea. It has been success-

fully applied to solve problems throughout the software engineer-

ing lifestyle, especially in testing and debugging (Harman et al.,

2012). Shin (Yoo, 2012) first used genetic programming to design

risk evaluation formula for spectrum-based fault localization. Uti-

lizing heuristic algorithm can give us a wider vision to solve the

fault localization problem.

There is also a large body of work on automated program re-

pair. Fault localization result is the basis of automatic program re-

pair (Gong et al., 2012; Debroy and Wong, 2014), which aims at
enerating patches automatically to fix faults in software. As most

utomated program repair (APR) tools apply fault localization (FL)

echniques to identify the locations of likely faults to be repaired.

ssiri and Bieman (2017) conducted a controlled experiment to

valuate the impact of ten FL techniques on APR effectiveness, per-

ormance and repair correctness. According to their experimental

esults, The effectiveness, performance and correctness of APR de-

ends on the FL method used. If FL does not identify the location

f a fault, the application of an APR tool will not be effective and

ill fail to repair the fault. Moreover, automatic program repair re-

ult can evaluate the effectiveness of fault localization techniques

 Qi et al., 2013). Recently, a new repair synthesis engine named

3 tackles patches involving multiple lines by grouping multiple

uggy locations and synthesizing repairs for several locations at

nce (Le et al., 2017). The intuition is that it clusters buggy loca-

ions into groups by either locality or suspiciousness scores pro-

uced by fault localization. All the above studies indicate that FL

s a vital pre-process in APR and it is crucial to locate all potential

aults.

. Conclusion

This paper presents FSMFL, a genetic algorithm based frame-

ork for multi-fault localization. A fitness function is designed to

valuate the combinations of program entities. Statistical hypothe-

is tests are conducted to compare FSMFL against other spectrum-

ased fault localization approaches. Experiments show that FSMFL

s competitive in single-fault localization and superior in multi-

ault localization. We have also developed optimization techniques

o improve the efficiency of FSMFL. Our extensive experiments

how that FSMFL is effective and efficient in multi-fault localiza-

ion.

cknowledgment

This work was partially supported by the National Natural Sci-

nce Foundation of China (NO. 61202030 , 61202006 , 71502125).

eferences

breu, R., Zoeteweij, P., Van Gemund, A.J., 2006. An evaluation of similarity coef-

ficients for software fault localization. In: Proceedings of International Confer-
ence on 12th Pacific Rim International Symposium on Dependable Computing

(PRDC’06), pp. 39–46. doi: 10.1109/PRDC.2006.18 .
breu, R., Zoeteweij, P., Van Gemund, A.J., 2009. Spectrum-based multiple fault lo-

calization. In: Proceedings of 24th IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE’09), pp. 88–99. doi: 10.1109/ASE.2009.25 .
ndrews, J.H., Briand, L.C., Labiche, Y., 2005. Is mutation an appropriate tool for

testing experiments? [software testing]. In: Proceedings of the 27th interna-
tional conference on Software engineering, pp. 402–411. doi: 10.1109/ICSE.2005.

1553583 .
ssiri, F.Y., Bieman, J.M., 2017. Fault localization for automated program repair:

effectiveness, performance, repair correctness. Software Q. J. 25 (1), 171–199.

doi: 10.1007/s11219- 016- 9312- z .
eizer, B. , 1990. Software Testing Techniques (2Nd Ed.). Van Nostrand Reinhold Co.,

New York, NY, USA .
Benjamini, Y. , Yekutieli, D. , 2001. The control of the false discovery rate in multiple

testing under dependency. Ann. Stat. 29 (4), 1165–1188 .
hekam, T.T., Papadakis, M., Traon, Y.L., Harman, M., 2017. An empirical study on

mutation, statement and branch coverage fault revelation that avoids the unre-

liable clean program assumption. In: Proceedings of the 39th International Con-
ference on Software Engineering. IEEE Press, Piscataway, NJ, USA, pp. 597–608.

doi: 10.1109/ICSE.2017.61 .
hen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E., 2002. Pinpoint: problem de-

termination in large, dynamic internet services. In: Proceedings of International
Conference on Dependable Systems and Networks., pp. 595–604. doi: 10.1109/

DSN.20 02.10290 05 .
allmeier, V., Lindig, C., Zeller, A., 2005. Lightweight bug localization with ample. In:

Proceedings of the sixth international symposium on Automated analysis-driven

debugging. ACM, New York, NY, USA, pp. 99–104. doi: 10.1145/1085130.1085143 .
Dean, B.C., Pressly, W.B., Malloy, B.A., Whitley, A .A ., 2009. A linear program-

ming approach for automated localization of multiple faults. In: Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering

(ASE’09), pp. 640–644. doi: 10.1109/ASE.2009.54 .

https://doi.org/10.13039/501100001809
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1109/ICSE.2005.1553583
https://doi.org/10.1007/s11219-016-9312-z
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0006
https://doi.org/10.1109/ICSE.2017.61
https://doi.org/10.1109/DSN.2002.1029005
https://doi.org/10.1145/1085130.1085143
https://doi.org/10.1109/ASE.2009.54

Y. Zheng et al. / The Journal of Systems and Software 139 (2018) 107–123 123

D

D

D

D

F

G

G

H

H

J

J

J

K

K

K

K

L

M

M

N

P

P

P

Q

S

S

S

S

S

S

S

S

S

S

T

T

T

T

W

W

W

W

W

W

X

X

X

X

X

Y

Y

Z

ebroy, V., Wong, W.E., 2009. Insights on fault interference for programs with mul-
tiple bugs. In: Proceedings of 20th International Symposium on Software Relia-

bility Engineering (ISSRE’09), pp. 165–174. doi: 10.1109/ISSRE.2009.14 .
ebroy, V., Wong, W.E., 2014. Combining mutation and fault localization for auto-

mated program debugging. J. Syst. Software 90, 45–60. doi: 10.1016/j.jss.2013.10.
042 .

iGiuseppe, N., Jones, J.A., 2011. On the influence of multiple faults on coverage-
based fault localization. In: Proceedings of the international symposium on soft-

ware testing and analysis. ACM, New York, NY, USA, pp. 210–220. doi: 10.1145/

20 01420.20 01446 .
o, H., Elbaum, S., Rothermel, G., 2005. Supporting controlled experimentation with

testing techniques: an infrastructure and its potential impact. Emp. Software
Eng. 10 (4), 405–435. doi: 10.1007/s10664- 005- 3861- 2 .

riedman, M. , 1937. The use of ranks to avoid the assumption of normality implicit
in the analysis of variance. J. Am. Stat. Assoc. 32 (200), 675–701 .

ong, C., Zheng, Z., Zhang, Y., Zhang, Z., Xue, Y., 2012. Factorising the multiple fault

localization problem: adapting single-fault localizer to multi-fault programs. In:
Proceedings of 19th Asia-Pacific Conference on Software Engineering Conference

(APSEC’12), 1. IEEE, pp. 729–732. doi: 10.1109/APSEC.2012.22 .
opinath, D., Zaeem, R.N., Khurshid, S., 2012. Improving the effectiveness of

spectra-based fault localization using specifications. In: Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering. ACM,

New York, NY, USA, pp. 40–49. doi: 10.1145/2351676.2351683 .

amill, M., Goseva-Popstojanova, K., 2009. Common trends in software fault and
failure data. IEEE Trans. Software Eng. 35 (4), 4 84–4 96. doi: 10.1109/TSE.2009.3 .

arman, M., Mansouri, S.A., Zhang, Y., 2012. Search-based software engineering:
trends, techniques and applications. ACM Comput. Surv. (CSUR) 45 (1), 11:1–

11:61. doi: 10.1145/2379776.2379787 .
ones, J.A., Bowring, J.F., Harrold, M.J., 2007. Debugging in parallel. In: Proceedings of

the international symposium on Software testing and analysis (ISSTA’07). ACM,

New York, NY, USA, pp. 16–26. doi: 10.1145/1273463.1273468 .
ones, J.A., Harrold, M.J., Stasko, J., 2002. Visualization of test information to assist

fault localization. In: Proceedings of the 24th international conference on Soft-
ware engineering. ACM, New York, NY, USA, pp. 467–477. doi: 10.1145/581339.

581397 .
ust, R., Jalali, D., Ernst, M.D., 2014. Defects4j: a database of existing faults to en-

able controlled testing studies for java programs. In: Proceedings of the Inter-

national Symposium on Software Testing and Analysis. ACM, New York, NY, USA,
pp. 437–440. doi: 10.1145/2610384.2628055 .

hachaturyan, A. , Semenovskaya, S. , Vainstein, B. , 1979. A statistical-thermodynamic
approach to determination of structure amplitude phases. Sov. Phys. Crystallogr

24, 519–524 .
hachaturyan, A., Semenovsovskaya, S., Vainshtein, B., 1981. The thermodynamic ap-

proach to the structure analysis of crystals. Acta Crystallograph. Section A 37

(5), 742–754. doi: 10.1107/S0567739481001630 .
im, J., Lee, E., 2014. Empirical evaluation of existing algorithms of spectrum based

fault localization. In: Proceedings of International Conference on Information
Networking (ICOIN), pp. 346–351. doi: 10.1109/ICOIN.2014.6799702 .

irkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing.
Science 220 (4598), 671–680. doi: 10.1126/science.220.4598.671 .

e, X.-B.D., Chu, D.-H., Lo, D., Le Goues, C., Visser, W., 2017. S3: Syntax- and
semantic-guided repair synthesis via programming by examples. In: Proceed-

ings of the 2017 11th Joint Meeting on Foundations of Software Engineering.

ACM, New York, NY, USA, pp. 593–604. doi: 10.1145/3106237.3106309 .
artin, R.C. , 2002. Agile Software Development: Principles, Patterns, and Practices.

Prentice Hall .
itchell, M. , 1998. An Introduction to Genetic Algorithms. MIT Press, Cambridge,

MA, USA .
aish, L., Lee, H.J., Ramamohanarao, K., 2011. A model for spectra-based software

diagnosis. ACM Trans. Software Eng. Methodol. (TOSEM) 20 (3), 11:1–11:32.

doi: 10.1145/20 0 0791.20 0 0795 .
earson, S., 2016. Evaluation of fault localization techniques. In: Proceedings of the

24th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering. ACM, New York, NY, USA, pp. 1115–1117. doi: 10.1145/2950290.2983967 .

earson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M.D., Pang, D., Keller, B.,
2017. Evaluating and improving fault localization. In: Proceedings of the 39th

International Conference on Software Engineering. IEEE Press, Piscataway, NJ,

USA, pp. 609–620. doi: 10.1109/ICSE.2017.62 .
erez, A., Abreu, R., van Deursen, A., 2017. A test-suite diagnosability metric for

spectrum-based fault localization approaches. In: Proceedings of the 39th Inter-
national Conference on Software Engineering. IEEE Press, Piscataway, NJ, USA,

pp. 654–664. doi: 10.1109/ICSE.2017.66 .
i, Y., Mao, X., Lei, Y., Wang, C., 2013. Using automated program repair for evaluat-

ing the effectiveness of fault localization techniques. In: Proceedings of the In-

ternational Symposium on Software Testing and Analysis (ISSTA’13). ACM, New
York, NY, USA, pp. 191–201. doi: 10.1145/2483760.2483785 .

aha, R.K. , Lease, M. , Khurshid, S. , Perry, D.E. , 2013. Improving bug localization us-
ing structured information retrieval. In: Automated Software Engineering (ASE),

2013 IEEE/ACM 28th International Conference on. IEEE, pp. 345–355 .
awilowsky, S.S., 2009. New effect size rules of thumb. J. Modern Appl. Stat. Meth-

ods 8 (2), 467–474. doi: 10.22237/jmasm/1257035100 .

ong, S., 2014. Estimating the effectiveness of spectrum-based fault localization. In:
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering. ACM, New York, NY, USA, pp. 814–816. doi: 10.1145/
263586 8.26616 80 .
teimann, F., Bertschler, M., 2009. A simple coverage-based locator for multiple
faults. In: Proceedings of International Conference on Software Testing Verifi-

cation and Validation (ICST’09), pp. 366–375. doi: 10.1109/ICST.2009.24 .
teimann, F. , Bertschler, M. , 2009. A simple coverage-based locator for multiple

faults. In: Software Testing Verification and Validation, 2009. ICST’09. Interna-
tional Conference on. IEEE, pp. 366–375 .

teimann, F., Frenkel, M., 2012. Improving coverage-based localization of multi-
ple faults using algorithms from integer linear programming. In: Proceedings

of IEEE 23rd International Symposium on Software Reliability Engineering (IS-

SRE’12), pp. 121–130. doi: 10.1109/ISSRE.2012.28 .
teimann, F. , Frenkel, M. , 2012b. Improving coverage-based localization of multiple

faults using algorithms from integer linear programming. In: Software Relia-
bility Engineering (ISSRE), 2012 IEEE 23rd International Symposium on. IEEE,

pp. 121–130 .
teimann, F., Frenkel, M., Abreu, R., 2013. Threats to the validity and value of em-

pirical assessments of the accuracy of coverage-based fault locators. In: Pro-

ceedings of the International Symposium on Software Testing and Analysis (IS-
STA’13). ACM, New York, NY, USA, pp. 314–324. doi: 10.1145/2483760.2483767 .

tigler, S.M. , 1981. Gauss and the invention of least squares. Ann. Stat. 9 (3),
465–474 .

un, S.-F., Podgurski, A., 2016. Properties of effective metrics for coverage-based sta-
tistical fault localization. In: Proceedings of IEEE International Conference on

Software Testing, Verification and Validation (ICST), pp. 124–134. doi: 10.1109/

ICST.2016.31 .
ang, C.M., Chan, W., Yu, Y.-T., 2014. Extending the theoretical fault localization ef-

fectiveness hierarchy with empirical results at different code abstraction levels.
In: Proceedings of IEEE 38th Annual Conference on Computer Software and Ap-

plications Conference (COMPSAC), pp. 161–170. doi: 10.1109/COMPSAC.2014.24 .
ang, C.M., Chan, W., Yu, Y.T., Zhang, Z., 2017. Accuracy graphs of spectrum-based

fault localization formulas. IEEE Trans. Reliab. 66 (2), 403–424. doi: 10.1109/TR.

2017.26 884 87 .
ang, C.M., Keung, J., Yu, Y.-T., Chan, W., 2016. Dfl: dual-service fault localization.

In: Proceedings of IEEE International Conference on Software Quality, Reliability
and Security (QRS), pp. 412–422. doi: 10.1109/QRS.2016.53 .

hung, F., Lo, D., Jiang, L., et al., 2012. Are faults localizable? In: Proceedings of
the 9th IEEE Working Conference on Mining Software Repositories, pp. 74–77.

doi: 10.1109/MSR.2012.6224302 .

ilcoxon, F. , 1992. Individual Comparisons by Ranking Methods. Springer New York,
New York, NY, pp. 196–202 .

inter, G. , Periaux, J. , Galan, M. , Cuesta, P. , 1996. Genetic Algorithms in Engineering
and Computer Science, 1st John Wiley & Sons, Inc., New York, NY, USA .

ong, E., Wei, T., Qi, Y., Zhao, L., 2008. A crosstab-based statistical method for effec-
tive fault localization. In: Proceedings of 1st International Conference on Soft-

ware Testing, Verification, and Validation, pp. 42–51. doi: 10.1109/ICST.2008.65 .

ong, W.E., Debroy, V., Gao, R., Li, Y., 2014. The dstar method for effective soft-
ware fault localization. IEEE Trans. Reliab. 63 (1), 290–308. doi: 10.1109/TR.2013.

2285319 .
ong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F., 2016. A survey on software fault

localization. IEEE Trans. Software Eng. 42 (8), 707–740. doi: 10.1109/TSE.2016.
2521368 .

u, R., Zhang, H., Cheung, S.-C., Kim, S., 2014. Crashlocator: locating crashing faults
based on crash stacks. In: Proceedings of the 2014 International Symposium on

Software Testing and Analysis. ACM, New York, NY, USA, pp. 204–214. doi: 10.

1145/2610384.2610386 .
ia, X., Bao, L., Lo, D., Li, S., 2016. ”automated debugging considered harmful”; con-

sidered harmful: a user study revisiting the usefulness of spectra-based fault
localization techniques with professionals using real bugs from large systems.

In: Proceedings of IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 267–278. doi: 10.1109/ICSME.2016.67 .

ie, X., Chen, T.Y., Kuo, F.-C., Xu, B., 2013. A theoretical analysis of the risk evalu-

ation formulas for spectrum-based fault localization. ACM Trans. Software Eng.
Methodol. (TOSEM) 22 (4), 31:1–31:40. doi: 10.1145/2522920.2522924 .

ie, X., Liu, Z., Song, S., Chen, Z., Xuan, J., Xu, B., 2016. Revisit of automatic de-
bugging via human focus-tracking analysis. In: Proceedings of IEEE/ACM 38th

International Conference on Software Engineering (ICSE), pp. 808–819. doi: 10.
1145/2884781.2884834 .

uan, J. , Monperrus, M. , 2014. Test case purification for improving fault localization.

In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. ACM, pp. 52–63 .

ue, X., Namin, A.S., 2013. How significant is the effect of fault interactions on
coverage-based fault localizations? In: Proceedings of ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, pp. 113–122.
doi: 10.1109/ESEM.2013.22 .

oo, S., 2012. Evolving human competitive spectra-based fault localisation tech-

niques. In: Proceedings of the 4th International Conference on Search Based
Software Engineering. Springer-Verlag, Berlin, Heidelberg, pp. 244–258. doi: 10.

1007/978- 3- 642- 33119- 0 _ 18 .
oo, S., Xie, X., Kuo, F.-C., Chen, T. Y., Harman, M., 2014. No pot of gold at the end

of program spectrum rainbow: greatest risk evaluation formula does not exist.
UCL Research Notes RN/14/14.

hang, L., Yan, L., Zhang, Z., Zhang, J., Chan, W., Zheng, Z., 2017. A theoretical analysis

on cloning the failed test cases to improve spectrum-based fault localization. J.
Syst. Software 129, 35–57. https://doi.org/10.1016/j.jss.2017.04.017 .

https://doi.org/10.1109/ISSRE.2009.14
https://doi.org/10.1016/j.jss.2013.10.042
https://doi.org/10.1145/2001420.2001446
https://doi.org/10.1007/s10664-005-3861-2
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0015
https://doi.org/10.1109/APSEC.2012.22
https://doi.org/10.1145/2351676.2351683
https://doi.org/10.1109/TSE.2009.3
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1145/1273463.1273468
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/2610384.2628055
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0023
https://doi.org/10.1107/S0567739481001630
https://doi.org/10.1109/ICOIN.2014.6799702
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1145/3106237.3106309
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0029
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2950290.2983967
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.66
https://doi.org/10.1145/2483760.2483785
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0035
https://doi.org/10.22237/jmasm/1257035100
https://doi.org/10.1145/2635868.2661680
https://doi.org/10.1109/ICST.2009.24
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0039
https://doi.org/10.1109/ISSRE.2012.28
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0041
https://doi.org/10.1145/2483760.2483767
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0043
https://doi.org/10.1109/ICST.2016.31
https://doi.org/10.1109/COMPSAC.2014.24
https://doi.org/10.1109/TR.2017.2688487
https://doi.org/10.1109/QRS.2016.53
https://doi.org/10.1109/MSR.2012.6224302
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0050
https://doi.org/10.1109/ICST.2008.65
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/2610384.2610386
https://doi.org/10.1109/ICSME.2016.67
https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1145/2884781.2884834
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0058
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0058
http://refhub.elsevier.com/S0164-1212(18)30026-8/sbref0058
https://doi.org/10.1109/ESEM.2013.22
https://doi.org/10.1007/978-3-642-33119-0_18
https://doi.org/10.1016/j.jss.2017.04.017

	Localizing multiple software faults based on evolution algorithm
	1 Introduction
	2 Motivation
	2.1 Preliminaries
	2.2 Motivating example

	3 Our approach
	3.1 Coverage information preprocessing
	3.2 Framework overview
	3.3 Population initialization components
	3.4 Candidate evaluation components
	3.5 Next population generation components
	3.6 Termination criterion setting
	3.7 Multiple faults localization for FSMFL

	4 Empirical studies
	4.1 Experiment setup
	4.1.1 Subject programs
	4.1.2 Fault injection and construction of real multi-fault versions

	4.2 Optimization and implementation
	4.3 Performance metrics for evaluation
	4.4 Hypothesis testing methods
	4.5 Experiments for single-fault versions
	4.5.1 Result analysis with single-fault versions
	4.5.2 Hypothesis test with single-fault versions

	4.6 Experiments for multiple-fault versions
	4.6.1 Result analysis with multi-fault versions
	4.6.2 Hypothesis test with multiple-fault versions
	4.6.3 Experiments using Top-N metric

	4.7 Efficiency
	4.8 Summary
	4.9 Threats to validity

	5 Related work
	6 Conclusion
	 Acknowledgment
	 References

